Gut-heart axis opportunity revealed....

A. Rehman et al.

The Journal of Nutrition xxx (xxxx) xxx

measured by serum LPS, Zonulin, and IFABP, J Diabetes Complications 35 (2021), 107766. [15] R.A. Koeth, Z. Wang, B.S. Levison, J.A. Buffa, E. Org, B.T. Sheehy, et al., Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis, Nat Med 19 (2013) 576 – 585. [16] M. Canyelles, M. Tondo, L. Ced  o, M. Farr  as, J.C. Escol  a-Gil, F. Blanco- Vaca, Trimethylamine n-oxide: a link among diet, gut microbiota, gene regulation of liver and intestine cholesterol homeostasis and HDL function, Int J Mol Sci 19 (2018) E3228. [17] N. O ’ Kennedy, D. Raederstorff, A.K. Duttaroy, Fruit fl ow ® : the fi rst European Food Safety Authority-approved natural cardio-protective functional ingredient, Eur J Nutr 56 (2017) 461 – 482. [18] Amending Decision 2009/980/EU as regards the conditions of use of an authorised health claim on the effect of water-soluble tomato concentrate on platelet aggregation, Off J Eur Union 53 (2010) L328/18 – L328/19. [19] N. O ’ Kennedy, L. Crosbie, M. van Lieshout, J.I. Broom, D.J. Webb, A.K. Duttaroy, Effects of antiplatelet components of tomato extract on platelet function in vitro and ex vivo: a time-course cannulation study in healthy humans, Am J Clin Nutr 84 (2006) 570 – 579. [20] Bresson J, Flynn A, Heinonen M, Hulshof K, Korhonen H, L ø vikM, Marchelli R, Martin A, Moseley B, Strain S (j J, et al. Panel Members. 2009. [21] H. Chen, S. Zhang, H. Wang, L. Bao, W. Wu, R. Qi, Fruit fl ow inhibits platelet function by suppressing Akt/GSK3 β , Syk/PLC γ 2 and p38 MAPK phosphorylation in collagen-stimulated platelets, BMC Complement Med Ther 22 (2022) 75. [22] H. Chen, S. Zhang, H. Wang, Y. Jiang, L. Bao, W. Wu, et al., Inhibitory effect of Fruit fl ow on platelet function: a randomized placebo- controlled trial in elderly subjects PALGRAVE MACMILLAN, 637398720000000000. Available from: https://www.sciencegate .app/document/10.21203/rs.3.rs-95541/v1. [23] N. O ’ Kennedy, R. Duss, A.K. Duttaroy, Dietary antiplatelets: a new perspective on the health bene fi ts of the water-soluble tomato concentrate Fruit fl ow, Nutrients 13 (2021) 2184. [24] A.K. Duttaroy, Role of gut microbiota and their metabolites on atherosclerosis, hypertension and human blood platelet function: a review, Nutrients 13 (2021) 144. [25] S.J. Lewis, K.W. Heaton, Stool form scale as a useful guide to intestinal transit time, Scand J Gastroenterol 32 (1997) 920 – 924. [26] Karolina Anna Mielko, Natalia Pude ł ko-Malik, Aneta Tarczewska, Piotr M ł ynarz, NMR spectroscopy as a “ green analytical method ” in metabolomics and proteomics studies, Sustain Chem Pharm 22 (2021), 100474. [27] B. Langmead, S.L. Salzberg, Fast gapped-read alignment with Bowtie 2, Nat Methods 9 (2012) 357 – 359. [28] R.C. Edgar, Search and clustering orders of magnitude faster than BLAST, Bioinformatics 26 (2010) 2460 – 2461. [29] M. Zaharia, W.J. Bolosky, K. Curtis, A. Fox, D. Patterson, S. Shenker, I. Stoica, R.M. Karp, T. Sittler, Faster and More Accurate Sequence Alignment with SNAP, ArXiv11115572 Cs Q-Bio 2011 Available from: http://arxiv.org/abs/1111.5572. [30] J.R. Cole, Q. Wang, J.A. Fish, B. Chai, D.M. McGarrell, Y. Sun, et al., Ribosomal Database Project: data and tools for high throughput rRNA analysis, Nucleic Acids Res 42 (2014) D633 – 642. [31] Introducing mothur: Open-Source, Platform-Independent, Community- Supported Software for Describing and Comparing Microbial Communities [Internet], Appl Environ Microbiol 75 (2009) 7537 – 7541. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2786419/. [32] N. O ’ Kennedy, L. Crosbie, H.-J. Song, X. Zhang, G. Horgan, A.K. Duttaroy, A randomised controlled trial comparing a dietary antiplatelet, the water-soluble tomato extract Fruit fl ow, with 75 mg aspirin in healthy subjects, Eur J Clin Nutr 71 (2017) 723 – 730. [33] R.K. Das, T. Datta, D. Biswas, R. Duss, N. O ’ Kennedy, A.K. Duttaroy, Evaluation of the equivalence of different intakes of Fruit fl ow in affecting platelet aggregation and thrombin generation capacity in a randomized, double-blinded pilot study in male subjects, BMC Nutr 7 (2021) 80. [34] N. Bergeron, P.T. Williams, R. Lamendella, N. Faghihnia, A. Grube, X. Li, et al., Diets high in resistant starch increase plasma levels of trimethylamine- N -oxide, a gut microbiome metabolite associated with CVD risk, Br J Nutr 116 (2016) 2020 – 2029. [35] Y. Heianza, D. Sun, S.R. Smith, G.A. Bray, F.M. Sacks, L. Qi, Changes in gut microbiota – related metabolites and long-term successful weight loss in response to weight-loss diets: the POUNDS Lost Trial, Diabetes Care 41 (2018) 413 – 419. [36] J. Chong, O. Soufan, C. Li, I. Caraus, S. Li, G. Bourque, et al., MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis, Nucleic Acids Res 46 (2018) W486 – W494.

[37] S. Macias, J. Kirma, A. Yilmaz, S.E. Moore, M.C. McKinley, P.P. McKeown, et al., Application of 1H-NMR Metabolomics for the discovery of blood plasma biomarkers of a Mediterranean diet, Metabolites 9 (2019) E201. [38] W.H.W. Tang, Z. Wang, B.S. Levison, R.A. Koeth, E.B. Britt, X. Fu, et al., Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk, N Engl J Med 368 (2013) 1575 – 1584. [39] M. Franck, J. de Toro-Martín, T. V Varin, V. Garneau, G. Pilon, D. Roy, et al., Gut microbial signatures of distinct trimethylamine n-oxide response to raspberry consumption, Nutrients 14 (2022) 1656. [40] W.-K. Wu, C.-C. Chen, P.-Y. Liu, S. Panyod, B.-Y. Liao, P.-C. Chen, et al., Identi fi cation of TMAO-producer phenotype and host-diet-gut dysbiosis by carnitine challenge test in human and germ-free mice, Gut 68 (2019) 1439 – 1449. [41] C.A. Miller, K.D. Corbin, K.-A. da Costa, S. Zhang, X. Zhao, J.A. Galanko, et al., Effect of egg ingestion on trimethylamine-N-oxide production in humans: a randomized, controlled, dose-response study, Am J Clin Nutr 100 (2014) 778 – 786. [42] D.L. Cruden, R.P. Galask, Reduction of trimethylamine oxide to trimethylamine by mobiluncus strains isolated from patients with bacterial vaginosis, Microb Ecol Health Dis 1 (1988) 95 – 100. [43] D. Fennema, I.R. Phillips, E.A. Shephard, Trimethylamine and trimethylamine n-oxide, a fl avin-containing monooxygenase 3 (FMO3)- mediated host-microbiome metabolic axis implicated in health and disease, Drug Metab Dispos 44 (2016) 1839 – 1850. [44] L. Hoyles, M.L. Jim  enez-Pranteda, J. Chilloux, F. Brial, A. Myridakis, T. Aranias, et al., Metabolic retroconversion of trimethylamine N-oxide and the gut microbiota, Microbiome 6 (2018) 73. [45] A. Genoni, C.T. Christophersen, J. Lo, M. Coghlan, M.C. Boyce, A.R. Bird, et al., Long-term Paleolithic diet is associated with lower resistant starch intake, different gut microbiota composition and increased serum TMAO concentrations, Eur J Nutr 59 (2020) 1845 – 1858. [46] Z. Wang, A.B. Roberts, J.A. Buffa, B.S. Levison, W. Zhu, E. Org, et al., Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis, Cell 163 (2015) 1585 – 1595. [47] A.P. Ahrens, T. Culpepper, B. Saldivar, S. Anton, S. Stoll, E.M. Handberg, et al., A six-day, lifestyle-based immersion program Faecalibacterium prausnitzii : a pilot study, Nutrients 13 (2021) 3459. [48] M.T. Velasquez, A. Ramezani, A. Manal, D.S. Raj, Trimethylamine n- oxide: the good, the bad and the unknown, Toxins 8 (2016) E326. [49] M.A.I. Al-Obaide, R. Singh, P. Datta, K.A. Rewers-Felkins, M.V. Salguero, I. Al-Obaidi, et al., Gut microbiota-dependent trimethylamine-n-oxide and serum biomarkers in patients with T2DM and advanced CKD, J Clin Med 6 (2017) E86. [50] P. Guo, K. Zhang, X. Ma, P. He, Clostridium species as probiotics: potentials and challenges, J Anim Sci Biotechnol 11 (2020) 24. [51] M.C. Rodríguez-Daza, E.C. Pulido-Mateos, J. Lupien-Meilleur, D. Guyonnet, Y. Desjardins, D. Roy, Polyphenol-mediated gut microbiota modulation: toward prebiotics and further, Front Nutr 8 (2021), 689456. [52] Y. Gu, X. Wang, J. Li, Y. Zhang, H. Zhong, R. Liu, et al., Analyses of gut microbiota and plasma bile acids enable strati fi cation of patients for antidiabetic treatment, Nat Commun 8 (2017) 1785. [53] F.A. Faradonbeh, Sa II, H. Lastuvkova, J. Cermanova, M. Hroch, H. Faistova, et al., Metformin impairs bile acid homeostasis in ethinylestradiol-induced cholestasis in mice, Chem Biol Interact 345 (2021), 109525. [54] P.D. Cani, J. Amar, M.A. Iglesias, M. Poggi, C. Knauf, D. Bastelica, et al., Metabolic endotoxemia initiates obesity and insulin resistance, Diabetes 56 (2007) 1761 – 1772. [55] P.D. Cani, M. Osto, L. Geurts, A. Everard, Involvement of gut microbiota in the development of low-grade in fl ammation and type 2 diabetes associated with obesity, Gut Microbes 3 (2012) 279 – 288. [56] L.An,U.Wirth,D.Koch,M.Schirren,M.Drefs,D.Koliogiannis,etal.,Therole of gut-derived lipopolysaccharides and the intestinal barrier in fatty liver diseases,JGastrointestSurgOffJSocSurgAlimentTract26(2022)671 – 683. [57] M.H. Janeiro, M.J. Ramírez, F.I. Milagro, J.A. Martínez, M. Solas, mitigates cardiovascular risk factors and induces shifts in gut microbiota, speci fi cally Lachnospiraceae, Ruminococcaceae, Implication of trimethylamine n-oxide (TMAO) in disease: potential biomarker or new therapeutic target, Nutrients 10 (2018) E1398. [58] R. Krüger, B. Merz, M.J. Rist, P.G. Ferrario, A. Bub, S.E. Kulling, et al., Associations of current diet with plasma and urine TMAO in the KarMeN study: direct and indirect contributions, Mol Nutr Food Res 61 (2017). [59] G. Costabile, C. Vetrani, L. Bozzetto, R. Giacco, L. Bresciani, D. Del Rio, et al., Plasma TMAO increase after healthy diets: results from 2 randomized controlled trials with dietary fi sh, polyphenols, and whole-grain cereals, Am J Clin Nutr 114 (2021) 1342 – 1350.

10

Powered by